This documentation is automatically generated by online-judge-tools/verification-helper
// verification-helper: PROBLEM https://yukicoder.me/problems/7107
#include<bits/stdc++.h>
using namespace std;
#define call_from_test
#include "../../mod/mint.cpp"
#include "../../math/moebius.cpp"
#include "../../convolution/divisor.cpp"
#undef call_from_test
signed main(){
cin.tie(0);
ios::sync_with_stdio(0);
int n;
cin>>n;
using M = Mint<int, 998244353>;
vector<M> emp(n+1,0),way(n+1,0);
M cnt{0};
M all{0};
auto sign=moebius(n);
using ll = long long;
for(int i=1;i<=n;i++){
emp[i]=M((ll)sign[i])*M(1).pow(n/i);
way[i]=M((ll)sign[i])*M(2).pow(n/i);
cnt+=emp[i];
all+=way[i];
}
LCMConvolution::zeta(way);
LCMConvolution::zeta(emp);
vector<M> dp0(n+1,0),dp1(n+1,0),dp2(n+1,0);
for(int i=1;i<=n;i++){
dp0[i]=emp[i]*emp[i];
dp1[i]=emp[i]*way[i];
dp2[i]=way[i]*way[i];
}
LCMConvolution::moebius(dp0);
LCMConvolution::moebius(dp1);
LCMConvolution::moebius(dp2);
M ans=(all-cnt)*(all-cnt);
M cof=M(3)/M(4);
for(int i=1;i<=n;i++){
ans+=dp0[i];
ans-=dp1[i]*M(2);
ans+=dp2[i]*cof.pow(n/i);
ans-=dp0[i];
ans+=dp1[i]*M(2);
ans-=dp2[i];
}
cout<<ans<<endl;
return 0;
}
#line 1 "test/yukicoder/7107.test.cpp"
// verification-helper: PROBLEM https://yukicoder.me/problems/7107
#include<bits/stdc++.h>
using namespace std;
#define call_from_test
#line 1 "mod/mint.cpp"
#line 3 "mod/mint.cpp"
using namespace std;
#endif
//BEGIN CUT HERE
template<typename T, T MOD = 1000000007>
struct Mint{
inline static constexpr T mod = MOD;
T v;
Mint():v(0){}
Mint(signed v):v(v){}
Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}
Mint pow(long long k){
Mint res(1),tmp(v);
while(k){
if(k&1) res*=tmp;
tmp*=tmp;
k>>=1;
}
return res;
}
static Mint add_identity(){return Mint(0);}
static Mint mul_identity(){return Mint(1);}
Mint inv(){return pow(MOD-2);}
Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
Mint& operator/=(Mint a){return (*this)*=a.inv();}
Mint operator+(Mint a) const{return Mint(v)+=a;}
Mint operator-(Mint a) const{return Mint(v)-=a;}
Mint operator*(Mint a) const{return Mint(v)*=a;}
Mint operator/(Mint a) const{return Mint(v)/=a;}
Mint operator+() const{return *this;}
Mint operator-() const{return v?Mint(MOD-v):Mint(v);}
bool operator==(const Mint a)const{return v==a.v;}
bool operator!=(const Mint a)const{return v!=a.v;}
static Mint comb(long long n,int k){
Mint num(1),dom(1);
for(int i=0;i<k;i++){
num*=Mint(n-i);
dom*=Mint(i+1);
}
return num/dom;
}
};
template<typename T, T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}
//END CUT HERE
#ifndef call_from_test
signed main(){
return 0;
}
#endif
#line 1 "math/moebius.cpp"
#line 3 "math/moebius.cpp"
using namespace std;
#endif
//BEGIN CUT HERE
// [0, n]
vector<int> moebius(int n){
n++;
vector<int> pr(n),sq(n);
using ll = long long;
for(ll i=2;i<n;i++){
if(pr[i]) continue;
for(ll j=i;j<n;j+=i) pr[j]=i;
for(ll j=i*i;j<n;j+=i*i) sq[j]=1;
}
vector<int> sign(n,0);
sign[1]=1;
for(ll i=2;i<n;i++){
if(sq[i]) continue;
sign[i]=-sign[i/pr[i]];
}
return sign;
}
//END CUT HERE
#ifndef call_from_test
//INSERT ABOVE HERE
signed main(){
return 0;
}
#endif
#line 1 "convolution/divisor.cpp"
#line 3 "convolution/divisor.cpp"
using namespace std;
#endif
// https://noshi91.hatenablog.com/entry/2019/09/23/002445
//BEGIN CUT HERE
// O(n \log \log n)
namespace DivisorTransform{
template<typename T, typename F>
void inc(vector<T> &as,F f){
assert(as[0]==T(0));
int n=as.size();
vector<bool> sieve(n,false);
for(int p=2;p<n;p++){
if(sieve[p]) continue;
for(int k=1;k*p<n;k++){
sieve[k*p]=true;
f(as[k],as[k*p]);
}
}
}
template<typename T, typename F>
void dec(vector<T> &as,F f){
assert(as[0]==T(0));
int n=as.size();
vector<bool> sieve(n,false);
for(int p=2;p<n;p++){
if(sieve[p]) continue;
for(int k=(n-1)/p;k!=0;--k){
sieve[k*p]=true;
f(as[k],as[k*p]);
}
}
}
}
namespace GCDConvolution{
template<typename T>
void zeta(vector<T> &as){
auto f=[](T &lo,T &hi){lo+=hi;};
DivisorTransform::dec(as,f);
}
template<typename T>
void moebius(vector<T> &as){
auto f=[](T &lo,T &hi){lo-=hi;};
DivisorTransform::inc(as,f);
}
}
namespace LCMConvolution{
template<typename T>
void zeta(vector<T> &as){
auto f=[](T &lo,T &hi){hi+=lo;};
DivisorTransform::inc(as,f);
}
template<typename T>
void moebius(vector<T> &as){
auto f=[](T &lo,T &hi){hi-=lo;};
DivisorTransform::dec(as,f);
}
}
//END CUT HERE
#ifndef call_from_test
//INSERT ABOVE HERE
signed main(){
return 0;
}
#endif
#line 10 "test/yukicoder/7107.test.cpp"
#undef call_from_test
signed main(){
cin.tie(0);
ios::sync_with_stdio(0);
int n;
cin>>n;
using M = Mint<int, 998244353>;
vector<M> emp(n+1,0),way(n+1,0);
M cnt{0};
M all{0};
auto sign=moebius(n);
using ll = long long;
for(int i=1;i<=n;i++){
emp[i]=M((ll)sign[i])*M(1).pow(n/i);
way[i]=M((ll)sign[i])*M(2).pow(n/i);
cnt+=emp[i];
all+=way[i];
}
LCMConvolution::zeta(way);
LCMConvolution::zeta(emp);
vector<M> dp0(n+1,0),dp1(n+1,0),dp2(n+1,0);
for(int i=1;i<=n;i++){
dp0[i]=emp[i]*emp[i];
dp1[i]=emp[i]*way[i];
dp2[i]=way[i]*way[i];
}
LCMConvolution::moebius(dp0);
LCMConvolution::moebius(dp1);
LCMConvolution::moebius(dp2);
M ans=(all-cnt)*(all-cnt);
M cof=M(3)/M(4);
for(int i=1;i<=n;i++){
ans+=dp0[i];
ans-=dp1[i]*M(2);
ans+=dp2[i]*cof.pow(n/i);
ans-=dp0[i];
ans+=dp1[i]*M(2);
ans-=dp2[i];
}
cout<<ans<<endl;
return 0;
}