This documentation is automatically generated by online-judge-tools/verification-helper
// verification-helper: PROBLEM https://yukicoder.me/problems/104
#include <bits/stdc++.h>
using namespace std;
#define call_from_test
#include "../../mod/mint.cpp"
#include "../../polynomial/berlekampmassey.cpp"
#include "../../convolution/naive.cpp"
#include "../../math/bostanmori.cpp"
#undef call_from_test
signed main(){
cin.tie(0);
ios::sync_with_stdio(0);
long long n;
int p,c;
cin>>n>>p>>c;
using M = Mint<int>;
using Poly = vector<M>;
const int d = 1500;
const int MAX = p+c+1;
vector<Poly> cf(MAX,Poly(d,0));
cf[0][0]=M(1);
for(int v:{2,3,5,7,11,13}){
vector<Poly> nx(MAX,Poly(d,0));
for(int t=0;t<=p;t++)
for(int i=0;i<d;i++)
for(int j=0;t+j<=p&&i+v*j<d;j++)
nx[t+j][i+v*j]+=cf[t][i];
swap(cf,nx);
}
for(int v:{4,6,8,9,10,12}){
vector<Poly> nx(MAX,Poly(d,0));
for(int t=p;t<=p+c;t++)
for(int i=0;i<d;i++)
for(int j=0;t+j<=p+c&&i+v*j<d;j++)
nx[t+j][i+v*j]+=cf[t][i];
swap(cf,nx);
}
Poly dp(d*3,0),as(d*3,0);
dp[0]=M(1);
for(int i=0;i<(int)dp.size();i++){
for(int j=0;j<d&&i+j<(int)dp.size();j++)
dp[i+j]+=dp[i]*cf[p+c][j];
for(int j=1;i+j<(int)dp.size();j++)
as[i]+=dp[i+j];
}
as.resize(d*2);
BostanMori<M> bm(naive<M>());
cout<<bm.build(n-1,as,berlekamp_massey(as))<<endl;
return 0;
}
#line 1 "test/yukicoder/0104.test.cpp"
// verification-helper: PROBLEM https://yukicoder.me/problems/104
#include <bits/stdc++.h>
using namespace std;
#define call_from_test
#line 1 "mod/mint.cpp"
#line 3 "mod/mint.cpp"
using namespace std;
#endif
//BEGIN CUT HERE
template<typename T, T MOD = 1000000007>
struct Mint{
inline static constexpr T mod = MOD;
T v;
Mint():v(0){}
Mint(signed v):v(v){}
Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}
Mint pow(long long k){
Mint res(1),tmp(v);
while(k){
if(k&1) res*=tmp;
tmp*=tmp;
k>>=1;
}
return res;
}
static Mint add_identity(){return Mint(0);}
static Mint mul_identity(){return Mint(1);}
Mint inv(){return pow(MOD-2);}
Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
Mint& operator/=(Mint a){return (*this)*=a.inv();}
Mint operator+(Mint a) const{return Mint(v)+=a;}
Mint operator-(Mint a) const{return Mint(v)-=a;}
Mint operator*(Mint a) const{return Mint(v)*=a;}
Mint operator/(Mint a) const{return Mint(v)/=a;}
Mint operator+() const{return *this;}
Mint operator-() const{return v?Mint(MOD-v):Mint(v);}
bool operator==(const Mint a)const{return v==a.v;}
bool operator!=(const Mint a)const{return v!=a.v;}
static Mint comb(long long n,int k){
Mint num(1),dom(1);
for(int i=0;i<k;i++){
num*=Mint(n-i);
dom*=Mint(i+1);
}
return num/dom;
}
};
template<typename T, T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}
//END CUT HERE
#ifndef call_from_test
signed main(){
return 0;
}
#endif
#line 1 "polynomial/berlekampmassey.cpp"
#line 3 "polynomial/berlekampmassey.cpp"
using namespace std;
#endif
//BEGIN CUT HERE
// construct a charasteristic equation from sequence
// return a monic polynomial in O(n^2)
template<typename T>
vector<T> berlekamp_massey(vector<T> &as){
using Poly = vector<T>;
int n=as.size();
Poly bs({-T(1)}),cs({-T(1)});
T y(1);
for(int ed=1;ed<=n;ed++){
int l=cs.size(),m=bs.size();
T x(0);
for(int i=0;i<l;i++) x+=cs[i]*as[ed-l+i];
bs.emplace_back(0);
m++;
if(x==T(0)) continue;
T freq=x/y;
if(m<=l){
for(int i=0;i<m;i++)
cs[l-1-i]-=freq*bs[m-1-i];
continue;
}
auto ts=cs;
cs.insert(cs.begin(),m-l,T(0));
for(int i=0;i<m;i++) cs[m-1-i]-=freq*bs[m-1-i];
bs=ts;
y=x;
}
for(auto &c:cs) c/=cs.back();
return cs;
}
//END CUT HERE
#ifndef call_from_test
signed main(){
return 0;
}
#endif
#line 1 "convolution/naive.cpp"
#line 3 "convolution/naive.cpp"
using namespace std;
#endif
//BEGIN CUT HERE
// O(N M)
template<typename T>
decltype(auto) naive(){
using Poly = vector<T>;
auto conv=[](Poly as, Poly bs){
Poly cs(as.size()+bs.size()-1,0);
for(int i=0;i<(int)as.size();i++)
for(int j=0;j<(int)bs.size();j++)
cs[i+j]+=as[i]*bs[j];
return cs;
};
return +conv;
}
//END CUT HERE
#ifndef call_from_test
signed main(){
return 0;
}
#endif
#line 1 "math/bostanmori.cpp"
#line 3 "math/bostanmori.cpp"
using namespace std;
#endif
// ref. https://qiita.com/ryuhe1/items/da5acbcce4ac1911f47a
//BEGIN CUT HERE
// Find k-th term of linear recurrence
// execute `conv` O(\log k) times
template<typename T>
struct BostanMori{
using Poly = vector<T>;
using Conv = function<Poly(Poly, Poly)>;
Conv conv;
BostanMori(Conv conv_):conv(conv_){}
Poly sub(Poly as,int odd){
Poly bs((as.size()+!odd)/2);
for(int i=odd;i<(int)as.size();i+=2) bs[i/2]=as[i];
return bs;
}
// as: initial values
// cs: monic polynomial
T build(long long k,Poly as,Poly cs){
reverse(cs.begin(),cs.end());
assert(cs[0]==T(1));
int n=cs.size()-1;
as.resize(n,0);
Poly bs=conv(as,cs);
bs.resize(n);
while(k){
Poly ds(cs);
for(int i=1;i<(int)ds.size();i+=2) ds[i]=-ds[i];
bs=sub(conv(bs,ds),k&1);
cs=sub(conv(cs,ds),0);
k>>=1;
}
return bs[0];
}
};
//END CUT HERE
#ifndef call_from_test
//INSERT ABOVE HERE
signed main(){
return 0;
}
#endif
#line 11 "test/yukicoder/0104.test.cpp"
#undef call_from_test
signed main(){
cin.tie(0);
ios::sync_with_stdio(0);
long long n;
int p,c;
cin>>n>>p>>c;
using M = Mint<int>;
using Poly = vector<M>;
const int d = 1500;
const int MAX = p+c+1;
vector<Poly> cf(MAX,Poly(d,0));
cf[0][0]=M(1);
for(int v:{2,3,5,7,11,13}){
vector<Poly> nx(MAX,Poly(d,0));
for(int t=0;t<=p;t++)
for(int i=0;i<d;i++)
for(int j=0;t+j<=p&&i+v*j<d;j++)
nx[t+j][i+v*j]+=cf[t][i];
swap(cf,nx);
}
for(int v:{4,6,8,9,10,12}){
vector<Poly> nx(MAX,Poly(d,0));
for(int t=p;t<=p+c;t++)
for(int i=0;i<d;i++)
for(int j=0;t+j<=p+c&&i+v*j<d;j++)
nx[t+j][i+v*j]+=cf[t][i];
swap(cf,nx);
}
Poly dp(d*3,0),as(d*3,0);
dp[0]=M(1);
for(int i=0;i<(int)dp.size();i++){
for(int j=0;j<d&&i+j<(int)dp.size();j++)
dp[i+j]+=dp[i]*cf[p+c][j];
for(int j=1;i+j<(int)dp.size();j++)
as[i]+=dp[i+j];
}
as.resize(d*2);
BostanMori<M> bm(naive<M>());
cout<<bm.build(n-1,as,berlekamp_massey(as))<<endl;
return 0;
}