This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/assignment"
#include <bits/stdc++.h>
using namespace std;
#define call_from_test
#include "../../bflow/capacityscaling.cpp"
#undef call_from_test
#ifdef SANITIZE
#define IGNORE
#endif
signed main(){
cin.tie(0);
ios::sync_with_stdio(0);
using ll = long long;
int n;
cin>>n;
MinCostFlow<ll, ll> G(n+n);
for(int i=0;i<n;i++){
G.add_supply(0+i,1);
G.add_demand(n+i,1);
}
vector<vector<decltype(G)::EdgePtr>> E(n);
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
int a;
cin>>a;
E[i].emplace_back(G.add_edge(i,n+j,0,1,a));
}
}
assert(G.build());
cout<<G.get_cost()<<endl;
for(int i=0;i<n;i++){
if(i) cout<<' ';
for(auto e:E[i])
if(G.get_edge(e).flow)
cout<<G.get_edge(e).dst-n;
}
cout<<endl;
return 0;
}
#line 1 "test/yosupo/assignment.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/assignment"
#include <bits/stdc++.h>
using namespace std;
#define call_from_test
#line 1 "bflow/capacityscaling.cpp"
#line 3 "bflow/capacityscaling.cpp"
using namespace std;
#endif
//BEGIN CUT HERE
// O(m^2 \log m \log U)
// U: maximum capacity
enum Objective{
MINIMIZE = +1,
MAXIMIZE = -1,
};
template<typename Flow, typename Cost,
Objective objective = Objective::MINIMIZE>
struct MinCostFlow{
template<typename T> inline void chmin(T &x,T y){x=min(x,y);}
struct Edge{
int src,dst;
Flow flow,cap;
Cost cost;
int rev;
Edge(int src,int dst,Flow cap,Cost cost,int rev):
src(src),dst(dst),flow(0),cap(cap),cost(cost),rev(rev){}
Flow residual_cap()const{return cap-flow;}
};
struct EdgePtr{
int v,e;
EdgePtr(int v,int e):v(v),e(e){}
};
int n;
vector<vector<Edge>> G;
vector<Flow> b;
vector<Cost> p;
MinCostFlow(int n):n(n),G(n),b(n,0){}
EdgePtr add_edge(int src,int dst,Flow lower,Flow upper,Cost cost){
int e=G[src].size();
int r=(src==dst?e+1:G[dst].size());
assert(lower<=upper);
G[src].emplace_back(src,dst,+upper,+cost*objective,r);
G[dst].emplace_back(dst,src,-lower,-cost*objective,e);
return EdgePtr(src,e);
}
const Edge &get_edge(EdgePtr ep)const{return G[ep.v][ep.e];}
void push(Edge &e,Flow amount){
e.flow+=amount;
G[e.dst][e.rev].flow-=amount;
}
void add_supply(int v,Flow amount){b[v]+=amount;}
void add_demand(int v,Flow amount){b[v]-=amount;}
Cost residual_cost(const Edge &e){
return e.cost+p[e.src]-p[e.dst];
}
vector<int> excess_vs,deficit_vs;
void saturate_negative(const Flow delta){
for(auto &es:G){
for(auto &e:es){
Flow cap=e.residual_cap();
cap-=cap%delta;
if(cap<0 or residual_cost(e)<0){
push(e,cap);
b[e.src]-=cap;
b[e.dst]+=cap;
}
}
}
excess_vs.clear();
deficit_vs.clear();
for(int v=0;v<n;v++){
if(b[v]>0) excess_vs.emplace_back(v);
if(b[v]<0) deficit_vs.emplace_back(v);
}
}
const Cost unreachable = std::numeric_limits<Cost>::max();
Cost farthest;
vector<Cost> dist;
vector<Edge*> parent;
struct P{
Cost first;
int second;
P(Cost first,int second):first(first),second(second){}
bool operator<(const P o)const{return first>o.first;}
};
priority_queue<P> pq;
template<typename Predicate>
void eliminate(vector<int> &vs,Predicate predicate){
vs.erase(remove_if(begin(vs),end(vs),predicate),end(vs));
}
bool dual(const Flow delta){
eliminate(excess_vs, [&](int v){return b[v]<+delta;});
eliminate(deficit_vs,[&](int v){return b[v]>-delta;});
dist.assign(n,unreachable);
for(int v:excess_vs) pq.emplace(dist[v]=0,v);
parent.assign(n,nullptr);
auto emplace=[&](Edge& e){
if(e.residual_cap()<delta) return;
Cost nxt=dist[e.src]+residual_cost(e);
if(nxt>=dist[e.dst]) return;
pq.emplace(dist[e.dst]=nxt,e.dst);
parent[e.dst]=&e;
};
farthest=0;
int deficit_count=0;
while(!pq.empty()){
Cost d=pq.top().first;
int v=pq.top().second;
pq.pop();
if(dist[v]<d) continue;
farthest=d;
if(b[v]<=-delta) deficit_count++;
if(deficit_count>=(int)deficit_vs.size()) break;
for(auto &e:G[v]) emplace(e);
}
pq=decltype(pq)();
for(int v=0;v<n;v++)
p[v]+=min(dist[v],farthest);
return deficit_count>0;
}
void primal(const Flow delta){
for(int t:deficit_vs){
if(dist[t]>farthest) continue;
Flow f=-b[t];
int v;
for(v=t;parent[v];v=parent[v]->src)
chmin(f,parent[v]->residual_cap());
chmin(f,b[v]);
f-=f%delta;
if(f<=0) continue;
for(v=t;parent[v];){
auto &e=*parent[v];
push(e,f);
int u=parent[v]->src;
if(e.residual_cap()<=0) parent[v]=nullptr;
v=u;
}
b[t]+=f;
b[v]-=f;
}
}
template<Flow SCALING_FACTOR=2>
bool build(){
p.resize(n);
Flow max_flow=1;
for(auto t:b) max_flow=max({max_flow,t,-t});
for(auto &es:G)
for(auto &e:es)
max_flow=max({max_flow,e.residual_cap(),-e.residual_cap()});
Flow delta=1;
while(delta<max_flow) delta*=SCALING_FACTOR;
for(;delta;delta/=SCALING_FACTOR){
saturate_negative(delta);
while(dual(delta)) primal(delta);
}
return excess_vs.empty() and deficit_vs.empty();
}
template<typename T=Cost>
T get_cost(){
T res=0;
for(auto &es:G)
for(auto &e:es)
res+=T(e.flow)*T(e.cost)/T(objective);
return res/T(2);
}
template<typename T=Cost> T get_gain(){return get_cost();}
vector<Cost> get_potential(){
fill(p.begin(),p.end(),0);
for(int i=0;i<n;i++)
for(auto &es:G)
for(auto &e:es)
if(e.residual_cap()>0)
chmin(p[e.dst],p[e.src]+e.cost);
return p;
}
};
template<typename Flow, typename Cost>
using MaxGainFlow = MinCostFlow<Flow, Cost, Objective::MAXIMIZE>;
//END CUT HERE
#ifndef call_from_test
//INSERT ABOVE HERE
signed main(){
return 0;
}
#endif
#line 8 "test/yosupo/assignment.test.cpp"
#undef call_from_test
#ifdef SANITIZE
#define IGNORE
#endif
signed main(){
cin.tie(0);
ios::sync_with_stdio(0);
using ll = long long;
int n;
cin>>n;
MinCostFlow<ll, ll> G(n+n);
for(int i=0;i<n;i++){
G.add_supply(0+i,1);
G.add_demand(n+i,1);
}
vector<vector<decltype(G)::EdgePtr>> E(n);
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
int a;
cin>>a;
E[i].emplace_back(G.add_edge(i,n+j,0,1,a));
}
}
assert(G.build());
cout<<G.get_cost()<<endl;
for(int i=0;i<n;i++){
if(i) cout<<' ';
for(auto e:E[i])
if(G.get_edge(e).flow)
cout<<G.get_edge(e).dst-n;
}
cout<<endl;
return 0;
}