This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3183"
#include<bits/stdc++.h>
using namespace std;
#define call_from_test
#include "../../tools/drop.cpp"
#include "../../graph/stronglyconnectedcomponent.cpp"
#include "../../graph/dijkstra.cpp"
#include "../../maxflow/fordfulkerson.cpp"
#undef call_from_test
#ifdef SANITIZE
#define IGNORE
#endif
const int MAX = 303;
int G[MAX][MAX]={};
signed main(){
cin.tie(0);
ios::sync_with_stdio(0);
int n,m;
cin>>n>>m;
SCC G(n);
int S=n,T=n+1;
Dijkstra<int> D(n+2);
FordFulkerson<int, true> F(n+2);
for(int i=0;i<m;i++){
int u,v;
cin>>u>>v;
u--;v--;
G.add_edge(u,v);
D.add_edge(u,v,1);
F.add_edge(u,v,1);
}
int k=G.build();
vector<int> indeg(n,0);
vector<int> outdeg(n,0);
for(int i=0;i<k;i++)
for(int j:G.H[i])
outdeg[i]++,indeg[j]++;
for(int i=0;i<k;i++){
if(i!=0 and indeg[i]==0) drop(-1);
if(i!=k-1 and outdeg[i]==0) drop(-1);
}
for(int i=0;i<n;i++){
if(G.blg[i]==0){
D.add_edge(S,i,0);
F.add_edge(S,i,2);
}
if(G.blg[i]==k-1){
D.add_edge(i,T,0);
F.add_edge(i,T,2);
}
}
int res=F.flow(S,T,2);
if(res!=2) drop(-1);
D.build(S);
if(~D.bs[T]) drop(D[T]);
drop(-1);
return 0;
}
#line 1 "test/aoj/3183.test.cpp"
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=3183"
#include<bits/stdc++.h>
using namespace std;
#define call_from_test
#line 1 "tools/drop.cpp"
#line 3 "tools/drop.cpp"
using namespace std;
#endif
//BEGIN CUT HERE
template<typename T> void drop(const T &x){cout<<x<<endl;exit(0);}
//END CUT HERE
#ifndef call_from_test
//INSERT ABOVE HERE
signed main(){
return 0;
}
#endif
#line 1 "graph/stronglyconnectedcomponent.cpp"
#line 3 "graph/stronglyconnectedcomponent.cpp"
using namespace std;
#endif
//BEGIN CUT HERE
struct SCC{
vector< vector<int> > G,R,H,C;
vector<int> vs,used,blg;
SCC(int n):G(n),R(n),used(n),blg(n){}
void add_edge(int u,int v){
G[u].emplace_back(v);
R[v].emplace_back(u);
}
void dfs(int v){
used[v]=1;
for(int u:G[v])
if(!used[u]) dfs(u);
vs.emplace_back(v);
}
void rdfs(int v,int k){
used[v]=1;
blg[v]=k;
C[k].emplace_back(v);
for(int u:R[v])
if(!used[u]) rdfs(u,k);
}
int build(bool uniq=true){
int n=G.size();
for(int v=0;v<n;v++)
if(!used[v]) dfs(v);
fill(used.begin(),used.end(),0);
int k=0;
for(int i=n-1;i>=0;i--){
if(!used[vs[i]]){
H.emplace_back();
C.emplace_back();
rdfs(vs[i],k++);
}
}
for(int v=0;v<n;v++)
for(int u:G[v])
if(blg[v]!=blg[u])
H[blg[v]].emplace_back(blg[u]);
if(uniq){
for(int i=0;i<k;i++){
sort(H[i].begin(),H[i].end());
H[i].erase(unique(H[i].begin(),H[i].end()),H[i].end());
}
}
return k;
}
int operator[](int k) const{return blg[k];}
};
//END CUT HERE
#ifndef call_from_test
signed main(){
return 0;
}
#endif
#line 1 "graph/dijkstra.cpp"
#line 3 "graph/dijkstra.cpp"
using namespace std;
#endif
//BEGIN CUT HERE
template<typename T>
struct Dijkstra{
struct Edge{
int to;
T cost;
Edge(int to,T cost):to(to),cost(cost){}
bool operator<(const Edge &o)const{return cost>o.cost;}
};
vector< vector<Edge> > G;
vector<T> ds;
vector<int> bs;
Dijkstra(int n):G(n){}
void add_edge(int u,int v,T c){
G[u].emplace_back(v,c);
}
void build(int s){
int n=G.size();
ds.assign(n,numeric_limits<T>::max());
bs.assign(n,-1);
priority_queue<Edge> pq;
ds[s]=0;
pq.emplace(s,ds[s]);
while(!pq.empty()){
auto p=pq.top();pq.pop();
int v=p.to;
if(ds[v]<p.cost) continue;
for(auto e:G[v]){
if(ds[e.to]>ds[v]+e.cost){
ds[e.to]=ds[v]+e.cost;
bs[e.to]=v;
pq.emplace(e.to,ds[e.to]);
}
}
}
}
T operator[](int k){return ds[k];}
vector<int> restore(int to){
vector<int> res;
if(bs[to]<0) return res;
while(~to) res.emplace_back(to),to=bs[to];
reverse(res.begin(),res.end());
return res;
}
};
//END CUT HERE
#ifndef call_from_test
signed main(){
return 0;
}
#endif
#line 1 "maxflow/fordfulkerson.cpp"
#line 3 "maxflow/fordfulkerson.cpp"
using namespace std;
#endif
//BEGIN CUT HERE
// O(F E)
template<typename Flow, bool directed>
struct FordFulkerson{
struct Edge{
int dst;
Flow cap;
int rev;
Edge(int dst,Flow cap,int rev):dst(dst),cap(cap),rev(rev){}
};
vector< vector<Edge> > G;
vector<int> used;
FordFulkerson(int n):G(n),used(n){}
int add_edge(int src,int dst,Flow cap){
int e=G[src].size();
int r=(src==dst?e+1:G[dst].size());
G[src].emplace_back(dst,cap,r);
G[dst].emplace_back(src,directed?0:cap,e);
return e;
}
Flow dfs(int v,int t,Flow f){
if(v==t) return f;
used[v]=true;
for(Edge &e:G[v]){
if(used[e.dst] or e.cap==0) continue;
Flow d=dfs(e.dst,t,min(f,e.cap));
if(d==0) continue;
e.cap-=d;
G[e.dst][e.rev].cap+=d;
return d;
}
return 0;
}
Flow flow(int s,int t,Flow lim){
Flow res=0;
while(1){
fill(used.begin(),used.end(),0);
Flow f=dfs(s,t,lim);
if(f==0) break;
res+=f;
lim-=f;
}
return res;
}
Flow flow(int s,int t){
return flow(s,t,numeric_limits<Flow>::max()/2);
}
};
//END CUT HERE
#ifndef call_from_test
signed main(){
return 0;
}
#endif
#line 11 "test/aoj/3183.test.cpp"
#undef call_from_test
#ifdef SANITIZE
#define IGNORE
#endif
const int MAX = 303;
int G[MAX][MAX]={};
signed main(){
cin.tie(0);
ios::sync_with_stdio(0);
int n,m;
cin>>n>>m;
SCC G(n);
int S=n,T=n+1;
Dijkstra<int> D(n+2);
FordFulkerson<int, true> F(n+2);
for(int i=0;i<m;i++){
int u,v;
cin>>u>>v;
u--;v--;
G.add_edge(u,v);
D.add_edge(u,v,1);
F.add_edge(u,v,1);
}
int k=G.build();
vector<int> indeg(n,0);
vector<int> outdeg(n,0);
for(int i=0;i<k;i++)
for(int j:G.H[i])
outdeg[i]++,indeg[j]++;
for(int i=0;i<k;i++){
if(i!=0 and indeg[i]==0) drop(-1);
if(i!=k-1 and outdeg[i]==0) drop(-1);
}
for(int i=0;i<n;i++){
if(G.blg[i]==0){
D.add_edge(S,i,0);
F.add_edge(S,i,2);
}
if(G.blg[i]==k-1){
D.add_edge(i,T,0);
F.add_edge(i,T,2);
}
}
int res=F.flow(S,T,2);
if(res!=2) drop(-1);
D.build(S);
if(~D.bs[T]) drop(D[T]);
drop(-1);
return 0;
}